

SQL Server Container Configuration with Extensible Key

Management (SQL Server EKM)

As an enterprise data platform SQL Server supports use of a wide array of services and resources on

both the local host and the domain, with a diverse ecosystem of cloud and third party solutions.

Solutions like Private Key and External Key Managers, Data Integration, and High Availability and

Disaster Recovery involve SQL scripts with varied credentials and proxy services.

Windocks 2.25 introduces new options to simplify integration with external resources, with control over

the ordering of scripts during a container build, and secure use of network and host based credentials.

Two examples help illustrate the use of these options:

SQL Server TDE: a new container requires a script to regenerate the Master database encryption

certificate prior to a TDE encrypted databases being mounted.

Extensible Key Manager (EKM) support commonly requires scripts run with specific credentials to

integrate containers with EKM infrastructure.

Control the order of script operations during container build

File extensions determine the order of script operations during container build. Scripts with the file

extension .sqlsys will be run prior to databases being mounted, and .sql file extensions will be run

after databases are mounted. The following dockerfile uses a cloned TDE encrypted database, and a

SQL Server script is regenerates the Master database encryption certificate prior to the encrypted

database being mounted. The .sqlsys file extension ensures that the script will be run prior to the

databases being mounted.

Secure use of account credentials

SQL Server credentials are used to allow SQL Server accounts to use host and domain based resources,

see: https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-

access/credentials-database-engine. Windocks provides automated, secure use of account credentials

for container builds, using a combination of environment variables and encrypted secrets.

FROM cloneimage

COPY tdescript.sqlsys .

RUN tdescript.sqlsys

https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-access/credentials-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-access/credentials-database-engine

As with other SQL Server scripts, this process uses file extensions to control the order of script

operations. Scripts with the .sqlsysrunas file extension are run prior to databases being mounted,

and scripts with the .sqlrunas extension are run following databases being mounted.

The steps involved in secure use of a credential includes the following:

1) Stop the Windocks service, and start the default SQL Server instance used for container operations.

2) Add the user credentials as a SQL Server login.

3) Add the new SQL Server user to the SysAdmin Group (the user needs permissions to the databases).

EXEC sp_addsrvrolemember 'newuser', 'sysadmin';

4) Return the SQL Server instance to “manual, off” state.

5) Using Explorer, navigate to \Windocks\bin directory, open a cmd prompt and enter encrypt

6) Enter the <newuser> password at the prompt and return

7) The encrypted password is recorded in the encrypted.txt file in the same directory. Open the file

using notepad, and copy the complete password into \windocks\config\node.conf as

illustrated. Note, the syntax for this encrypted password must be exactly as shown to

support container cleanup and other operations that refer to these password.

SQLRUNAS_PASSWORD1=”paste encrypted password here”

8) Save the updated node.conf file

9) Restart the Windocks service

Test the use of secure user credentials

Navigate to the \windocks\samples\testadddbwithsqlrunas folder. Open and edit the

dockerfile to reflect the environment variable implemented earlier, and the appropriate

username.

FROM mssql-20XX

ADDDB customers customerdata.mdf

COPY cleanseData.sqlrunas .

RUN cleanseData.sqlrunas ‘newuser’ SQLRUNAS_PASSWORD1

Build a container using the Dockerfile and start the container.

>docker build c:\windocks\samples\testadddbwithsqlrunas

>docker start <containerid>

Use SQL Server Management Studio to open the container (127.0.0.1,1000X with a comma separator),

and inspect the customers database. Select the customers database tables, and expand the columns,

to confirm the “last name” column was deleted.

This process can be used in a wide variety of use-cases that involve host or domain level user accounts

used to integrate SQL Server containers with external resources and services.

Windocks Support

For questions or assistance in working with Windocks containers, contact support@windocks.com

For further details on working with SQL Server TDE, refer to SQL Server Containers and TDE.

mailto:support@windocks.com

