

SQL Clones for SQL Server 2017 Linux Containers

Windocks supports use of SQL Server database clones with Windocks SQL containers and instances. This

document details the setup, and use of SQL Server database clones with SQL Server 2017 Linux

containers.

Building SQL Server images with Dockerfiles
Dockerfiles are plain text configuration files that define the data source and target. Windocks 3.0 adds
support for external storage arrays, or Windows file system database cloning. Windows based SQL
Server images are built with Full or Differential backups, or database files, with each being a full byte
copy of the data. Once created an image supports creation and delivery of clones in seconds with full
read/write support, with each requiring less than 40 MB on delivery.

This Dockerfile defines a clonable image that delivers cloned databases to a new SQL Server 2017
container on a Linux host.

ENV USE_DOCKERFILE_TO_CREATE_CONTAINER ensures the Dockerfile is applied at run time for each
container/environment. Delivery to SQL Server 2017 Linux containers is accomplished with RUN
TargetAttach_MSContainerSqlLinux with the parameters shown. SQL Server clones are built with
SETUPCLONING, with FULL, DIFF (differential) backups, or RAW database files.

Support for delivery of database clones over the network is based on SMB, with a file share created on
the Windocks host mapped to the Linux host (c:\windocks\data to /windocks/dataexternal as shown
above). The Linux setup involves installing SAMBA, creating the mapped folders, and setup of the
Docker daemon to allow for remote commands. Finally, copy the desired Windows Docker client
executable into a folder as called for in the Dockerfile (C:\docker\docker.exe).

A one-time build creates an image that supports an unlimited number of clones. The example below
shows the build, followed by a command to deliver the clone to a new SQL 2017 container. Most of the

FROM mssql-2017

ENV USE_DOCKERFILE_TO_CREATE_CONTAINER=1

RUN TargetAttach_MSContainerSqlLinux MSDockerIp|192.168.XX.XXX:2375

MSSqlImageName|microsoft/mssql-server-linux

MSDockerClientPath|C:\docker\docker.exe MSContainerPort|$MSContainerPort

MSContainerSaPassword|$MSContainerSaPassword MSLinuxMountPathForMountDb|None

MSLinuxMountPathForSetupCloning|/windocks/dataexternal/$ContainerId/$ContainerImageName

SETUPCLONING FULL customers C:\windocks\dbbackups\customerdatafull.bak

parameters are defined in the image, and only two are required for container creation, including the
target port and SQL sa password.

Management of the combined environment is handled by the Windocks container. When it’s time to
refresh the environment the removal of the Windocks container removes the Linux container and
associated mounts.

Working with sensitive credentials

Windocks 3.0 introduces encrypted credential support for Windocks images and containers. The

workflow described above involves clear text SQL sa passwords, which is the current practice in use of

SQL Server 2017 on Linux. When working with the Windocks SQL Server containers, credentials can be

secured using the following methods:

1) Windocks containers support Windows authentication.

2) Windocks Windows SQL Server containers are created by cloning a SQL Server instance that is

configured for use by Windocks. Each container inherits SQL logins configured on the parent

instance, enabling users with these accounts.

3) Windocks also includes configurable SQL sa credentials for each created SQL container, including an

option for no sa passwords, encrypted sa passwords, or passwords in clear text. The three options

are configured in the Windocks config folder, node file as SHOW_SA_PASSWORD=”0” or 1, or 2, for

no password, encrypted, or clear text, respectively. Restart the Windocks Service following changes

to the Windocks configuration.

Windocks also provides password encryption based on the Windows Data Protection API (DPAPI). To

encrypt a password navigate to \Windocks\bin and open a command prompt and enter “encrypt.” The

program prompts for a credential string, and writes the hashed result to encrypted.txt in the same

directory. Open the text file and copy the string into the Dockerfile that requires the particular

password. For example, when working with storage arrays, a required parameter will include an array

user and password:

ArrayPassword|1,0,0,0,208,140,157,223,1,21,209,17,140,122,0,192,79,194,151,235,1,0, . . .

Adding encrypted passwords into Dockerfiles allows them to be saved and reused securely. Once a

credential is encrypted the hashed result or environment variable needs to be used in any references to

that credential.

>docker build –t <image> c:\windocks\samples\TestWindocksClonetoMSLinuxSQLContainer

> docker create -e $MSContainerPort="16000" -e $MSContainerSaPassword="Pa55word!!" <image>

When configured to deliver encrypted credentials, Windocks SQL container sa passwords are delivered

in standard Docker client return strings (image below). To unencrypt the credential copy the complete

string and save as an encrypted.txt file. RDP to the Windocks server, and copy the encrypted.txt into

the \windocks\bin directory. Open a command prompt and enter “decrypt.”

The program decrypts the text file and presents the password:

Working with a subset of databases

Users can work with a subset of the databases from an image by using a run time environment variable:
SQL_DB_NAME_OVERRIDES=”dbname1, dbname2”

>docker create -e SQL_DB_NAME_OVERRIDES=”dbname1, dbname2” <imagename>

Working with a web UI

The Windocks web UI simplifies use for developers and other users. Open a Chrome or FireFox browser

and point to the IP address of the Windocks server (local: 127.0.0.1). Images are displayed with

required parameters, including the option to work with a subset of desired databases. The image

C:\Users\windocks>docker create mssql-2017ContainerId =

b748ec44e5005197ba2fcac3936d63e1095eb90d369ab95889fce96b5ad2dd52 & ContainerPort =

10001 & ContainerUserName = prison_oo_02N0b32 & ContainerPassword = Pr!50hUil1gMma &

MSSQLPort = 10001 & MSSQLServerUserName = sa & MSSQLServerSaPassword =

1,0,0,0,208,140,157,223,1,21,209,17,140,122,0,192,79,194,151,235,1,0,0,0,74,38,15,17,101,94,19

7,70,144,140,230,233,116,122,95,115,4,0,0,0,2,0,0,0,0,0,16,102,0,0,0,1,0,0,32,0,0,0,204,17,196,23

,176,117,186,46,74,114,251,145,206,253,4,177,209,91,1,202,160,75,47,212,34,242,160,145,16,80,

211,154,0,0,0,0,14,128,0,0,0,2,0,0,32,0,0,0,59,46,53,25,86,50,150,70,22,76,116,157,147,34,15,52,

161,36,225,9,148,56,60,249,168,7,24,30,225,153,234,200,16,0,0,0,82,13,58,208,252,214,197,176,

215,156,227,89,84,176,82,180,64,0,0,0,31,200,214,65,59,122,87,223,14,50,212,104,115,74,133,53

,35,137,117,170,252,50,75,8,65,12,76,133,102,20,165,230,65,103,239,192,240,236,159,16,143,82,

253,225,38,178,11,90,122,6,5,196,190,108,235,188,74,133,117,230,241,207,90,83

C:\Users\Windocks>

Original bytes:

 80 114 33 53 114 49 89 56 118 112 84 54 71 99

Original password:

Pr!5r1Y8vpT6Gc

targeting Linux SQL containers only requires user input on the target port and SQL sa password, and

includes a drop down selector for working with a subset of the databases in the image.

SQL Server cloning for SQL Server containers and instances

SQL Server 2017 Linux containers are drawing understandable attention in a world that is increasingly

embracing Linux and open source technologies. Regardless of the form of SQL Server you use, database

cloning is key to enabling an efficient workflow for development and test. The Windocks database

cloning highlighted in this article will enable efficient upgrade testing, and work with large and complex

data environments on the new SQL Server 2017 Linux containers.

Start to explore these capabilities today by downloading the free Windocks Community Edition,

available at https://www.windocks.com/community-docker-windows

https://www.windocks.com/community-docker-windows

