

SQL Server Containers and Transparent Data Encryption

(TDE) Databases

Using SQL Server TDE with Windocks containers is straightforward and uses the same SQL Server scripts

normally used with TDE. The process begins by implementing the encryption key in the Master

database of the Windocks default instance used for container support.

One article that is helpful is: https://www.sqlshack.com/how-to-configure-transparent-data-encryption-

tde-in-sql-server/

Implement an encryption key, and then generate an encryption certificate as shown:

Backup and Restoring the TDE encryption key:

Remember to back up the certificate to a known location, and a separate server is recommended rather

than the local server as shown here.

The encryption certificate is restored to a server using the following scripts.

CREATE CERTIFICATE TDE_Cert

WITH

SUBJECT='Database_Encryption';

GO

BACKUP CERTIFICATE TDE_Cert

TO FILE = 'C:\temp\TDE_Cert'

WITH PRIVATE KEY (file='C:\temp\TDE_CertKey.pvk',

ENCRYPTION BY PASSWORD='InsertStrongPasswordHere';

GO

USE Master;

GO

CREATE MASTER KEY ENCRYPTION

BY PASSWORD=’InsertStrongPasswordHere’

GO

https://www.sqlshack.com/how-to-configure-transparent-data-encryption-tde-in-sql-server/
https://www.sqlshack.com/how-to-configure-transparent-data-encryption-tde-in-sql-server/

Applying Encryption to a User-defined Database

Encryption is applied to a database, through the following two steps, referencing the existing encryption

certificate “TDE_Cert”. The encryption is enabled in the second script.

Working with SQL Server Containers

Windocks containers are created by cloning an assigned SQL Server instance that is identified in the

\windocks\config\node.config file. Each container inherits the attributes of the default instance

Master database, and that includes the encryption key and certificate, along with user permissions, and

USE Master;

GO

CREATE CERTIFICATE TDE_Cert

FROM FILE = 'C:\Temp\TDE_Cert'

WITH PRIVATE KEY (FILE = 'C:\TDE_CertKey.pvk'

DECRYPTION BY PASSWORD = 'InsertStrongPasswordHere';

GO

USE <DB>;

GO

CREATE DATABASE ENCRYPTION KEY

WITH ALGORITHM = AES_256

ENCRYPTION BY SERVER CERTIFICATE TDE_Cert;

GO

USE Master;

ALTER DATABASE <DB>

SET ENCRYPTION ON;

GO

USE Master;

GO

CREATE MASTER KEY ENCRYPTION

BY PASSWORD=’InsertStrongPasswordHere’

GO

other configuration settings. When working with the assigned default instance, be sure the Windocks

service is turned off, and return the default instance to an “off” state following updates to the instance.

Windocks containers inherit the Master database encryption certificate, which can be confirmed by

viewing the container in SSMS. The Windows Server recognizes the container as a new session, and

using the inherited certificate generates a session related error (SQL Server error 15581: “please open

the key in the session prior to this operation.” The certificate needs to be refreshed, which is

accomplished with the following script. Following the refresh of the certificate, the container can be

used to restore encrypted backups and other operations that use of the encryption certificate.

The workflow to use a TDE enabled container is illustrated below in two examples. The first builds a

database clone image using encrypted backup files. Once the image is built a second dockerfile delivers

a TDE enabled container with the encrypted cloned databases. Both examples reference the above

script as tdesetup.sqlsys. These samples also assume the SQL Server host instance has the appropriate

encryption certificates enabled in the Master database.

Please note that Windocks supports running scripts on the container prior to mounting databases, or

after. In the case of TDE the scripts need to be applied prior to attempting to work with encrypted

databases, to refresh the encryption certificate. This is accomplished by using scripts with the file

extension script.sqlsys. In other cases scripts need to be run after the databases are mounted and

available, such as when configuring support for database mail. In these cases use the normal script.sql

extension.

This example illustrates the building of clone based image, using encrypted backups.

USE MASTER;

ALTER SERVICE MASTER KEY FORCE REGENERATE;

OPEN MASTER KEY DECRYPTION BY PASSWORD='StrongPassword';

ALTER MASTER KEY ADD ENCRYPTION BY SERVICE MASTER KEY;

CLOSE MASTER KEY;

>docker build –t <imagename> \path\to\dockerfile

FROM mssql-2012

COPY tdesetup.sqlsys .

RUN tdesetup.sqlsys

SETUPCLONING FULL \\path\to\encryptedbackup

This illustrates the building of a new container, using the image built above. The >docker build –t is

used to build clonable images, and >docker build is used to build a container. On delivery of the

container, the container is started with >docker start <containerid>.

In summary, when working with SQL Server TDE each container requires a script run to refresh the

Master database encryption key. Scripts included in Windocks dockerfiles are processed either before

or after databases are mounted or added, using script.sqlsys or script.sql file extensions, respectively

Windocks Support

For questions or assistance in working with Windocks containers, contact support@windocks.com

>docker build <imagename>

FROM <imagename>

COPY tdesetup.sqlsys .

RUN tdesetup.sqlsys

mailto:support@windocks.com

