
 
 

Windocks Command Line Reference 

 

Windocks is a port of Docker’s open source to Windows, and supports Windows 8.1 and 10 Pro and 
Enterprise editions, Windows Server 2012 R2, and Windows Server 2016.   Windocks provides support 
for .NET, all editions of SQL Server 2008 onward, and Java and a variety of open source projects.    

Docker clients for Mac, Linux, Windows 

The WinDocks Windows client is included in the install package in the bin directory.   Docker 1.7.0 clients 
for Mac, Linux and Windows can be downloaded using the following links:  

Docker Mac client  
 
Docker Windows client  
 
Docker Linux client  

Windocks as a Windows Service 

Windocks installs as a Windows Service with automatic start.    Windocks is accessed with standard 
Docker client software, or with the Windocks web UI.  For remote access, ensure the Windows firewall is 
configured to allow inbound traffic on container ports 10,000 to 10,200, the Service port of 2375, and 
the default SQL Server port of 1433.   

To access Windocks through the web UI, use either Chrome or Firefox browsers using the IP address of 
the Windocks server (127.0.0.1 for local use).   

WinDocks Commands: 

WinDocks supports the following Docker commands.   Remote clients must use a more complex syntax: 
 

docker –H=tcp://docks.host.ip.add:2375 <command> <options> <args>  

 
The docker client can also be used locally on the host, without the “-H=tcp:// . . . “ string:  
 

docker <command> <options> <args> 

 
Windocks installs the client on the system path of the host, so the following commands are accessed 
from the command line on any directory path.   For use of these commands on other systems navigate 
to the directory where the client is located.   

https://get.docker.com/builds/Darwin/x86_64/docker-1.7.0
https://get.docker.com/builds/Windows/x86_64/docker-1.7.0.exe
https://get.docker.com/builds/Linux/x86_64/docker-1.7.0


 
>docker build –t <imagename> <directory> Builds an image only.  This command 

supports building SQL Server clonable 
images. 

>docker build <directory> Builds an image and container, with the 

image named with the container name.  
Does not support building an image with 
cloned databases. 

>docker commit <option> <instruction><containerid> <imagename>  

 Commits a container to create a new 
image.   Does not support creating 
images from containers with cloned 
databases. 

>docker create <option> <image>   Creates a new stopped container. 

>docker exec <containerid> <command> Executes a command in a container.  Note, 

Windocks lacks the ability to write output to a 
shell.  

>docker images     Lists available images on the host. 

>docker ps      Lists containers on the host. 

>docker rm <containerid>                                      Removes (deletes) containers.   Use 2-3 digits  

                                                                                to achieve a unique match. 

>docker rmi <imagename>                                     Removes image, use the full name. 

>docker run –d <option> <image>   Creates a running container. 

>docker start <containerid>    Starts the container 

>docker stop <containerid>    Stops the container 

 

Containers created with create or run –d can include assigned ports, SA_PASSWORD and 

names.   A commit can include a Dockerfile instruction to ADD, COPY, or RUN, with the           -

-change option.  

-e SA_PASSWORD=”sa_password”  Note:  include a suitably complex password. 

-p <port> 

--name <containername>   Note:  use lowercase in image names. 

--change “instruction file” 



 
--cidfile=<path to folder> 

-e SQL_DB_NAME_OVERRIDES=”db1, db2” Allows users to select a subset of databases 

from a larger image.   

 

DockerFiles:  
 

Dockerfiles are plain text configuration files that support the creation of containers and images.   A 
number of examples are included in the \windocks\samples folders.    The Docker client copies all files 
and folders that are located with the Dockerfile to the host.   It is important to include only files that are 
desired in the container or image to be located with the Dockerfile.   
 
Supported Dockerfile commands include:  
 

FROM<image> 

ADD <file> . 

ADDDB <dbname> <mdf> <ndf> <ldf> 

COPY <file> .  

ENV <environment variable>   note:  SA_PASSWORD not supported at this time. 

ENV USE_DOCKERFILE_TO_CREATE_CONTAINER 

EXPOSE <port> 

MOUNTDB <dbname> \path\to\db.mdf \path\to\db_log.ldf  Universal paths for 

network located files.  

RUN <file> 

RUN TargetAttach_SqlWindows <parameters> Ids the target as a Windows 

SQL instance 

RUN SourceClone_San_Pure <parameters>    Ids a Pure Array as source 

SETUPCLONING FULL <dbname> <path to Full backup> 

SETUPCLONING DIFF <dbname> <path to Differential backup> 

SETUPCCLONING RAW <dbname> <path to DB files> 

 

 
Note, SETUPCLONING instructions must be used with the >docker build -t command.  For network attached 
file shares use universal file paths.    



 
 
Database files referenced by the ADDDB should be located in the same directory as the Dockerfile.  
 

Resources: 
 
Getting Started with SQL Server containers with in container data 

Getting Started with SQL Server containers and database clones 

Windocks Installation and Configuration  

https://windocks.com/blog-2/docker-windows-containers-and-DNS 

https://windocks.com/files/WinDocks_Licensing_and_Support.pdf  

For information on working with multi-tier environments, including .NET see: 

https://windocks.com/lps/gitbuildtest  

For technical support email:   support@windocks.com  

For information on how Windocks compares to Microsoft’s new containers in Windows Server 2016:  

https://windocks.com/blog-2/Windows-Containers-Compared-Windocks-Microsoft  

 

 

 

https://windocks.com/blog-2/docker-windows-containers-and-DNS
https://windocks.com/files/WinDocks_Licensing_and_Support.pdf
https://windocks.com/lps/gitbuildtest
mailto:support@windocks.com
https://windocks.com/blog-2/Windows-Containers-Compared-Windocks-Microsoft

